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1. Basic Concepts of Neural Network (NN) 
 
2. Why do we need Deep Learning? 
 
3. Learning Representation for NLP 
 
4. Tools for Word Embedding 
 - Word2Vector 
 - Ranking-based 
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� Training (Activation Functions) 
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� Training (Activation Functions) 
 
 
 
 
 
 

� Scoring Functions (Softmax) 
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Basic Concepts of NN 

� Learning: Backpropagation 
� Calculate error at the output 
� Back-propagation = gradient descent + chain rule 
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� Neural Network-Core Components 
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� Neural Network-Process 
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� Why was not old NN successful? 
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Why? Deep Learning 

� Neural Network-Process 
�  ,  parameter   
� Parameter   Local Minima     
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� Deeper Network, Harder Learning 
� Network      . ,  Error 

Propagation  . ReLU    
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� Pre-Training 
� Pre-training  NN     
� AutoEncoder  Restricted Boltzmann Machine   
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� Pre-Training-Performance 
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Learning Representation for NLP 

� One-hot representation (or symbolic) 
� Ex) [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0] 
� Dimensionality 

� 20K (speech) – 50K (PTB) – 500K (big vocab) – 3M (Google 1T) 
 

� Continuous representation 
� Latent Semantic Analysis, Random projection 
� Latent Dirichlet Allocation, HMM clustering 
� Distributed Representation (Neural word embedding) 

� Dense vector 
� By adding supervision from other tasks -> improve the representation 

 

� Distributed Representation 
� DNN   AI          

 Object    Symbol    . 
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� Distributed Representation 
�   ‘ ’   
� Curse of Dimensionality   
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Learning Representation for NLP 

� Good One – Word Representation 
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Learning Representation for NLP 

� Neural Network Language Model 
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Learning Representation for NLP 

� Back-Propagation Algorithm 
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Learning Representation for NLP 

� Ranking-based (Collobert) 
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Learning Representation for NLP 

� Recurrent Neural Network 

42 

Learning Representation for NLP 

� Word2Vec: CBOW, Skip-Gram 
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Tools for Word Embedding 

� Word2Vec 
� https://code.google.com/p/word2vec/ 
� http://deeplearning4j.org/word2vec.html#just 
� Ubutu  (JAVA) 

� Googlecode    
� svn checkout http://word2vec.googlecode.com/svn/trunk 
� trunk     
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Tools for Word Embedding 

� Word2Vec  
� Make   

� Warning   

 



45 

Tools for Word Embedding 

� Word2Vec  
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Tools for Word Embedding 
� Word2Vec parameters 

� -output 
�  

� -size 
�  word vector   (default value: 100) 

� -windows 
� Max skip length (default value: 5) 

� -cbow 
� 1: continuous bag of word model, 0: skip-gram model 

� -iter 
�   (default value: 5) 

� -min-count 
�       (default value: 5) 

� -save-vocab 
�     

� -read-vocab 
�    
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Tools for Word Embedding 

� Word2Vec   
� -train 
�         

 
 
 
 

 
 
� Tutorial  

� http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-
words-model.html 
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Tools for Word Embedding 

� Ranking-based Model 
� https://bitbucket.org/aboSamoor/word2embeddings 
� Python, Theano 
� Result file (pickle) 
 

� a = np.load(sys.argv[2]) 
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Thank you for your attention! 
http://web.donga.ac.kr/yjko/ 

   


